Animation: Die Ableitungsfunktion graphisch dargestellt: Unterschied zwischen den Versionen

Aus Schulphysikwiki
Wechseln zu: Navigation, Suche
Zeile 6: Zeile 6:
 
{|style="border-collapse: separate; border-spacing: 30px 0px;"
 
{|style="border-collapse: separate; border-spacing: 30px 0px;"
 
|
 
|
a) <math>f'(2.35)\,dx</math>
+
a) <math>f'(2.35)</math>
 
|
 
|
b) <math>f'(3.9)\,dx</math>
+
b) <math>f'(3.9)</math>
 
|
 
|
c) <math>f'(5.2)\,dx</math>
+
c) <math>f'(5.2)</math>
 
|
 
|
d) <math>f'(0)\,dx</math>
+
d) <math>f'(0)</math>
 
|
 
|
e) <math>f'(-1)\,dx</math>
+
e) <math>f'(-1)</math>
 
|
 
|
e) <math>f'(-5.25)\,dx</math>
+
e) <math>f'(-5.25)</math>
 
|}
 
|}
  

Version vom 24. November 2015, 20:23 Uhr

Hiermit kann man sich für eine Funktion f an der Stelle x die Steigung des Graphen (Ableitung) anzeigen lassen.

  • Die Stelle x kann man mit der Maus bewegen.
  • Mit den Kontrollkästchen kann man sich das Steigungsdreieck der Tangente und/oder die Ableitungsfunktion anzeigen lassen.

1) Bestimme die folgenden Ableitungen:

a) f(2.35)

b) f(3.9)

c) f(5.2)

d) f(0)

e) f(1)

e) f(5.25)

2) Durch Doppelklicken auf die Funktionsgleichung links kann man auch andere Funktionen eingeben.

Probiere folgende Funktionen aus:
  • Die konstante Funktion

f(x)=2

  • Die lineare Funktion

f(x)=0.5x+1

  • Die quadratische Funktion

f(x)=(x1)2+2

  • Die Sinusfunktion

f(x)=sin(x)


(Wieso im Algebra-Fenster noch der blöde Text auftaucht, weiß ich auch nicht.)