Formatvorlagen: Unterschied zwischen den Versionen

Aus Schulphysikwiki
Wechseln zu: Navigation, Suche
(Copyrightangabe bei eigenen Bildern)
(Ein Video von youtube)
Zeile 293: Zeile 293:
 
Mit: <nowiki><youtube>8wN2y94N3GI</youtube></nowiki>
 
Mit: <nowiki><youtube>8wN2y94N3GI</youtube></nowiki>
 
<youtube>8wN2y94N3GI</youtube>
 
<youtube>8wN2y94N3GI</youtube>
 +
 +
<iframe width="560" height="315" src="https://www.youtube.com/embed/KoDICeGG4BU?rel=0" frameborder="0" allowfullscreen></iframe>
  
 
===Ein Bild im richtigen Maßstab===
 
===Ein Bild im richtigen Maßstab===

Version vom 6. März 2017, 14:37 Uhr

Die Hauptüberschrift

kein Inhaltsverzeichnis: __NOTOC__


Keine Abschnittsbearbeitung: __NOEDITSECTION__


Eine echte Leerzeile hinter einem Bild: <br style="clear: both" />


Hoch- und Tiefgestellte Zeichen:

<sup>hochgestellt</sup> Text hochgestellt

<sub>tiefgestellt</sub> Text tiefgestellt


Ein Doppelpunkt in einer Formel: 20 \, \colon 5 = 4 ergibt: [math]20 \, \colon 5 = 4[/math]

Eine Winkelangabe von 360^\circ: [math]360^\circ[/math].

Eine Fußnote

Hier ist noch Folgendes zu Erwähnen. [1]

<ref>Fußnote</ref>

Und nach dem Text steht ganz unten:

  1. Fußnote
<references />

Mehrere Verweise auf die gleiche Fußnote:

Erster Verweis:

<ref name="Name">Fußnotentext</ref>

Nächste Verweise:

<ref name="Name" />

Eine Datei zum Runterladen

Copyrightangabe bei eigenen Bildern

By Patrick Nordmann (schulphysikwiki.de)
[GFDL (http://www.gnu.org/copyleft/fdl.html) or 
CC BY 3.0 (http://creativecommons.org/licenses/by/3.0)]

Eine Tabelle mit Bildern


<gallery widths=180px heights=120px  perrow=4 caption="Spiegelbild einer Lampe in einer Seifenhaut">
 Bild:film_of_soap_interference_1.jpg|Bild 1 <br /> ...und ein Kommentar in einer neuen Zeile
 Bild:|
 Bild:|
 Bild:|
 Bild:|
</gallery>

Eine Tabelle mit Text nach oben ausgerichtet

Mit |style="vertical-align:top;"|

An einem Wasserkraftwerk an der Dreisam finden sich folgende Angaben:

Leistung: 260kW
Durchfluss: 7000 l/sec
Fallhöhe: 4m

Man kann aus Durchfluss und Fallhöhe die maximale Leistung berechnen:

[math]I_E = 7000 \,\rm \frac{kg}{sec} \cdot 10\,\frac{m}{sec^2}\cdot 4\,m = 280 \, kW[/math]

Die Turbine hätte demnach einen sehr hohen Wirkungsgrad!

Das Dreisamkraftwerk beim Fußballstadion.

eine schöne Tabelle mit Rand

{|class="wikitable" style="text-align: center"
!style="border-style: solid; border-width: 4px "| 
Überschrift 1

!valign="top"; style="border-style: solid; border-width: 4px "|
Überschrift 2

|-
|style="border-style: solid; border-width: 4px "| 
Zeile 1 Spalte 1 etwas breiter

|style="border-style: solid; border-width: 4px "| 
Zeile 1 Spalte 2

|-
|style=" text-align:right; border-style: solid; border-width: 4px "| 
rechts: Zeile 2 Spalte 1

|valign="top"; style="border-style: solid; border-width: 4px "|
Zeile 2 Spalte 2

|-
|style="text-align:left; border-style: solid; border-width: 4px "| 
links: Zeile 3 Spalte 1

|valign="top"; style="border-style: solid; border-width: 4px "|
Zeile 3 Spalte 2
|}

Überschrift 1

Überschrift 2

Zeile 1 Spalte 1 etwas breiter

Zeile 1 Spalte 2

rechts: Zeile 2 Spalte 1

Zeile 2 Spalte 2

links: Zeile 3 Spalte 1

Zeile 3 Spalte 2

Eine elegante Tabelle mit dünnem Rand

{|class="wikitable" 
!Name der Energie
!colspan="2"|Mengenartige (extensive) Größen 
(Energieträger) !colspan="2"|haben zugehörige Eigenschaften (intensive Größen)
(Potential / Beladungsmaß) !Leistung
[math]P = \dot E[/math] !absolute
Energieänderung !gespeicherte
Energie |- | |align="right"|Energie |[math][E]=\mathrm{J \quad(Joule)}[/math] |colspan="5"| |- |elektrische Energie |align="right"|el. Ladung |[math][Q] = \mathrm{C \quad (Coulomb)}[/math] |align="right"|el. Potential |[math][\varphi_{el}] = \mathrm{V \quad (Volt)}=\frac{J}{C}[/math] |[math]P=\varphi \, I \quad (U\, I)[/math] |[math]\triangle E = \varphi \, Q \quad (U \, Q)[/math] |[math]E= \bar \varphi \, Q \quad (\bar U \, Q)[/math] |}


Name der Energie Mengenartige (extensive) Größen
(Energieträger)
haben zugehörige Eigenschaften (intensive Größen)
(Potential / Beladungsmaß)
Leistung
[math]P = \dot E[/math]
absolute
Energieänderung
gespeicherte
Energie
Energie [math][E]=\mathrm{J \quad(Joule)}[/math]
elektrische Energie el. Ladung [math][Q] = \mathrm{C \quad (Coulomb)}[/math] el. Potential [math][\varphi_{el}] = \mathrm{V \quad (Volt)}=\frac{J}{C}[/math] [math]P=\varphi \, I \quad (U\, I)[/math] [math]\triangle E = \varphi \, Q \quad (U \, Q)[/math] [math]E= \bar \varphi \, Q \quad (\bar U \, Q)[/math]

Tabelle mit mehr Rand in den Zellen

{|style="border-collapse: separate; border-spacing: 30px 0px;"
|
a) [math]\int_0^2 \!\! f(x)\,dx[/math]
|
b) [math]\int_0^{3.9}\!\! f(x)\,dx[/math]
|
c) [math]\int_{3.9}^{6.2}\!\! f(x)\, dx[/math]
|}

a) [math]\int_0^2 \!\! f(x)\,dx[/math]

b) [math]\int_0^{3.9}\!\! f(x)\,dx[/math]

c) [math]\int_{3.9}^{6.2}\!\! f(x)\, dx[/math]

Eine mathematische Gleichungsumformung / Herleitung

\begin{array}{rcl}
z        &=& a \\
f(x,y,z) &=& x + y + z
\end{array}

[math] \begin{array}{rcl} z & = & a \\ f(x,y,z) & = & x + y + z \end{array} [/math]

\begin{array}{rrcll}
&          a\, b &=& z & | \, \mathopen: b \quad \text{teilen} \\
\Rightarrow  & a &=& \frac{z}{b}
\end{array}

[math] \begin{array}{rrcll} & a\, b & = & z & |\,\mathopen: b \quad \text{teilen} \\ \Rightarrow & a & = & \frac{z}{b} \end{array} [/math]

\text{aus } 2\,x=8 \text{ folgt: } x=4

[math] \text{aus } 2\,x=8 \text{ folgt: } x=4 [/math]

Vektoren und Matrizen

\begin{pmatrix}  1 \\ 2 \end{pmatrix}
[math]\begin{pmatrix} 1 \\ 2 \end{pmatrix}[/math]
\begin{pmatrix} 
 11 & 12 \\
 21 & 22 
\end{pmatrix}
[math]\begin{pmatrix} 11 & 12 \\ 21 & 22 \end{pmatrix}[/math]

Ein wichtiger Merksatz

{|class="wikitable" style="border-style: solid; border-width: 4px "
|
ES GIBT NICHTS GUTES, AUSSER MAN TUT ES!
|}

ES GIBT NICHTS GUTES, AUSSER MAN TUT ES!


Geogebra aus GeogebraTube einbinden

{{#widget:Iframe 
|url=http://tube.geogebra.org/material/iframe/id/296557/width/1222/height/770/border/888888/rc/false/ai/false/sdz/true/smb/false/stb/false/stbh/true/ld/false/sri/true/at/auto
|width=1200
|height=600
|border=0
}}

Ein Video von youtube

Mit: <youtube>8wN2y94N3GI</youtube>

<iframe width="560" height="315" src="https://www.youtube.com/embed/KoDICeGG4BU?rel=0" frameborder="0" allowfullscreen></iframe>

Ein Bild im richtigen Maßstab

Bei 96dpi und 100% Druckgröße wird ein Zentimeter auch einen Zentimeter lang!

Test_4x6cm_96dpi.png

Test 4x6cm 96dpi.png

Links