Animation: Veranschaulichung der Kettenregel: Unterschied zwischen den Versionen
Aus Schulphysikwiki
Zeile 12: | Zeile 12: | ||
Die Ableitung (Änderungsrate) von <math>f(g(x))</math> ist ''positiv'', wenn bei einer Vergrößerung von <math>x</math> auch <math>f(g(x))</math> ''zunimmt''. | Die Ableitung (Änderungsrate) von <math>f(g(x))</math> ist ''positiv'', wenn bei einer Vergrößerung von <math>x</math> auch <math>f(g(x))</math> ''zunimmt''. | ||
− | Die Ableitung ist ''negativ'', wenn bei einer Vergrößerung von <math>x</math> | + | Die Ableitung ist ''negativ'', wenn bei einer Vergrößerung von <math>x</math> die Werte von <math>f(g(x))</math> ''abnehmen''. |
*Wovon hängt es ab, ob <math>f \circ g</math> eine positive oder negative Ableitung an der Stelle <math>x</math> hat? | *Wovon hängt es ab, ob <math>f \circ g</math> eine positive oder negative Ableitung an der Stelle <math>x</math> hat? | ||
Version vom 12. November 2017, 22:46 Uhr
Mit dem blauen Schieberegler kann man den Eingabewert [math]x[/math] der ersten Funktion einstellen.
Das Ergebnis ist der Eingabewert der zweiten Funktion, die das Endergebnis liefert.
- Mit welchen Eingabewerten der ersten Funktion ist das Endergebnis maximal (minimal)?
- Mit welchen Eingabewerten der ersten Funktion ist das Endergebnis Null?
"Wackelt" man am Eingabewert, so kann man die Änderungsrate der einzelnen Funktionen und der Verkettung erkennen.
- An welchen Stellen ist die Änderungsrate der einzelnen Funktionen besonders groß?
- An welchen Stellen ist die Änderungsrate der einzelnen Funktionen Null?
- An welchen Stellen ist die Änderungsrate der Verkettung besonders groß?
- An welchen Stellen ist die Änderungsrate der Verkettung Null?
Die Ableitung (Änderungsrate) von [math]f(g(x))[/math] ist positiv, wenn bei einer Vergrößerung von [math]x[/math] auch [math]f(g(x))[/math] zunimmt.
Die Ableitung ist negativ, wenn bei einer Vergrößerung von [math]x[/math] die Werte von [math]f(g(x))[/math] abnehmen.
- Wovon hängt es ab, ob [math]f \circ g[/math] eine positive oder negative Ableitung an der Stelle [math]x[/math] hat?