Gedämpfte Schwingungen: Unterschied zwischen den Versionen
Aus Schulphysikwiki
(→Bei einem Strömungswiderstand und "großer" Geschwindigkeit) |
(→Bei einem Strömungswiderstand und "kleiner" Geschwindigkeit) |
||
Zeile 28: | Zeile 28: | ||
===Bei einem Strömungswiderstand und "kleiner" Geschwindigkeit=== | ===Bei einem Strömungswiderstand und "kleiner" Geschwindigkeit=== | ||
− | Laminare | + | Laminare Strömung ohne Wirbel |
− | + | <br/> | |
+ | <br/><math>F_{R}</math><math>\sim v</math> | ||
+ | <br/> | ||
+ | <br/>Amplitude nimmt exponentiell ab | ||
+ | <br/> | ||
+ | <br/> '''DGL:''' <math>m\ddot y=-Dy-r\dot y</math> (<math>r</math>: Reibungskoeffizient) | ||
+ | <br/> <math>\ddot y=-{D\over m}y-{r\over m}\dot y</math> | ||
+ | <br/> | ||
+ | <br/> <math>\operatorname{y(}\, t)=\hat y_oe^{-kt}\sin {(\omega t + \varphi)</math> (<math>k</math>: Dämpfungskoeffizient) | ||
+ | <br/> <math>k={r\over{2m}}</math> <math>\omega^2={\omega_o}^2-k^2</math> | ||
=====Schwingfall <math>\quad \mathrm{k^2} \, < \, \omega_0^2 \quad \Leftrightarrow \quad r^2 \, < \, 4 \mathrm{D m}</math>===== | =====Schwingfall <math>\quad \mathrm{k^2} \, < \, \omega_0^2 \quad \Leftrightarrow \quad r^2 \, < \, 4 \mathrm{D m}</math>===== | ||
Version vom 7. Dezember 2006, 18:13 Uhr
Inhaltsverzeichnis
[Verbergen]Merkmale einer gedämpften Schwingung
Beispiele
Versuch: Schwingende Stange
Aufbau
Datei:Versuchsaufbau Schwingungen gedämpft Stange.jpg
Versuchsaufbau mit Markierungen der Amplitude.
Versuch: Wassergedämpftes Federpendel
Aufbau
Datei:Versuchsaufbau Schwingungen gedämpft.jpg
Versuchsaufbau mit variablen Gewichten und Scheiben.
Beobachtung
Datei:Schwingung Dämpfung klein.png
Bla bla bla
Datei:Schwingung Dämpfung mittel.png
Bla bla bla
Datei:Schwingung Dämpfung Grenzfall.png
Bla bla bla
Datei:Schwingung Dämpfung Kriechfall.png
Bla bla bla
Theoretischer Hintergrund
Bei Gleitreibung
Die Amplitude nimmt linear ab, die Frequenz ändert sich nicht.
FR=const.
DGL: [math]m\ddot y=-Dy\pm F_R[/math]
Bei einem Strömungswiderstand und "kleiner" Geschwindigkeit
Laminare Strömung ohne Wirbel
FR∼v
Amplitude nimmt exponentiell ab
DGL: [math]m\ddot y=-Dy-r\dot y[/math] ([math]r[/math]: Reibungskoeffizient)
[math]\ddot y=-{D\over m}y-{r\over m}\dot y[/math]
[math]\operatorname{y(}\, t)=\hat y_oe^{-kt}\sin {(\omega t + \varphi)[/math] ([math]k[/math]: Dämpfungskoeffizient)
[math]k={r\over{2m}}[/math] [math]\omega^2={\omega_o}^2-k^2[/math]
Schwingfall k2<ω20⇔r2<4Dm
aperiodischer Grenzfall k2=ω20⇔r2=4Dm
Kriechfall k2>ω20⇔r2>4Dm
y(t)=ˆy0e−Kt mit K=k−sqrtk2−ω20
Bei einem Strömungswiderstand und "großer" Geschwindigkeit
Strömung mit Wirbelbildung
FR∼v2
DGL: [math]m\ddot y=-Dy-r\dot y^2[/math] [math]\Rightarrow[/math]ist nicht exakt lösbar! (nur näherungsweise mit Computer)