Formatvorlagen
Inhaltsverzeichnis
- 1 Die Hauptüberschrift
- 1.1 Eine Fußnote
- 1.2 Eine Datei zum Runterladen
- 1.3 Copyrightangabe bei eigenen Bildern
- 1.4 Eine Tabelle mit Bildern
- 1.5 Eine Tabelle mit Text nach oben ausgerichtet
- 1.6 Eine vom Text umflossene Tabelle
- 1.7 eine schöne Tabelle mit Rand
- 1.8 Eine elegante Tabelle mit dünnem Rand
- 1.9 Tabelle mit mehr Rand in den Zellen
- 1.10 Eine mathematische Gleichungsumformung / Herleitung
- 1.11 Vektoren und Matrizen
- 1.12 Ein wichtiger Merksatz
- 1.13 Geogebra aus GeogebraTube einbinden
- 1.14 Ein Video von youtube
- 1.15 Ein Bild im richtigen Maßstab
- 2 Links
Die Hauptüberschrift
kein Inhaltsverzeichnis: __NOTOC__
Keine Abschnittsbearbeitung: __NOEDITSECTION__
Eine echte Leerzeile hinter einem Bild: <br style="clear: both" />
Hoch- und Tiefgestellte Zeichen:
<sup>hochgestellt</sup>
Text hochgestellt
<sub>tiefgestellt</sub>
Text tiefgestellt
Ein Doppelpunkt in einer Formel: 20 \, \colon 5 = 4 ergibt: [math]20 \, \colon 5 = 4[/math]
Eine Winkelangabe von 360^\circ: [math]360^\circ[/math].
Eine Fußnote
Hier ist noch Folgendes zu Erwähnen. [1]
<ref>Fußnote</ref>
Und nach dem Text steht ganz unten:
- ↑ Fußnote
<references />
Mehrere Verweise auf die gleiche Fußnote:
Erster Verweis:
<ref name="Name">Fußnotentext</ref>
Nächste Verweise:
<ref name="Name" />
Eine Datei zum Runterladen
- Bewertungsmaßstäbe einer GFS
Copyrightangabe bei eigenen Bildern
By Patrick Nordmann (schulphysikwiki.de)
[GFDL (http://www.gnu.org/copyleft/fdl.html) or
CC BY 3.0 (http://creativecommons.org/licenses/by/3.0)]
Eine Tabelle mit Bildern
<gallery widths=180px heights=120px perrow=4 caption="Spiegelbild einer Lampe in einer Seifenhaut">
Bild:film_of_soap_interference_1.jpg|Bild 1 <br /> ...und ein Kommentar in einer neuen Zeile
Bild:|
Bild:|
Bild:|
Bild:|
</gallery>
Eine Tabelle mit Text nach oben ausgerichtet
Mit |style="vertical-align:top;"|
An einem Wasserkraftwerk an der Dreisam finden sich folgende Angaben:
Man kann aus Durchfluss und Fallhöhe die maximale Leistung berechnen:
Die Turbine hätte demnach einen sehr hohen Wirkungsgrad! |
Eine vom Text umflossene Tabelle
{|style="float:right;"
|valign="top"|
Erste Spalte
|valign="top"|
Zweite Spalte
|}
Ein homogenes Feld ist, wie der Name schon sagt, überall gleich. Das heißt, seine Dichte/Stärke und seine Struktur (Richtungen) sind überall gleich.
- Ein Kondensator mit großen Platten und kleinem Abstand hat ein fast homogenes Feld zwischen den Ladungen.
- Ein kurzer Magnet mit großflächigen Polen, wie ein Scheibenmagnet ebenso.
- Es gibt keinen "Gravitationskondensator", da es nur positive Massen gibt.
- Das Gravitationsfeld ist in dem uns vertrauten Bereich von ca. 10 km Breite, Länge und Höhe fast homogen. (Alle Felder ohne Sprünge oder Knicke sind in einem kleinen Ausschnitt fast homogen!)
- Das elektrische/magnetische Feld zieht die Platten/Pole aufeinander zu. Senkrecht dazu zieht es die einzelnen Platten/Pole in die Länge.
- Bei einem Plattenkondensator werden deshalb die Ladungen an die Innenseite der Platten gezogen und gleichzeitig quer zu den Feldlinien an die äußeren Ränder der Platten gedrückt.
eine schöne Tabelle mit Rand
{|class="wikitable" style="text-align: center"
!style="border-style: solid; border-width: 4px "|
Überschrift 1
!valign="top"; style="border-style: solid; border-width: 4px "|
Überschrift 2
|-
|style="border-style: solid; border-width: 4px "|
Zeile 1 Spalte 1 etwas breiter
|style="border-style: solid; border-width: 4px "|
Zeile 1 Spalte 2
|-
|style=" text-align:right; border-style: solid; border-width: 4px "|
rechts: Zeile 2 Spalte 1
|valign="top"; style="border-style: solid; border-width: 4px "|
Zeile 2 Spalte 2
|-
|style="text-align:left; border-style: solid; border-width: 4px "|
links: Zeile 3 Spalte 1
|valign="top"; style="border-style: solid; border-width: 4px "|
Zeile 3 Spalte 2
|}
Überschrift 1 |
Überschrift 2 |
---|---|
Zeile 1 Spalte 1 etwas breiter |
Zeile 1 Spalte 2 |
rechts: Zeile 2 Spalte 1 |
Zeile 2 Spalte 2 |
links: Zeile 3 Spalte 1 |
Zeile 3 Spalte 2 |
Eine elegante Tabelle mit dünnem Rand
{|class="wikitable"
!Name der Energie
!colspan="2"|Mengenartige (extensive) Größen
(Energieträger)
!colspan="2"|haben zugehörige Eigenschaften (intensive Größen)
(Potential / Beladungsmaß)
!Leistung
[math]P = \dot E[/math]
!absolute
Energieänderung
!gespeicherte
Energie
|-
|
|align="right"|Energie
|[math][E]=\mathrm{J \quad(Joule)}[/math]
|colspan="5"|
|-
|elektrische Energie
|align="right"|el. Ladung
|[math][Q] = \mathrm{C \quad (Coulomb)}[/math]
|align="right"|el. Potential
|[math][\varphi_{el}] = \mathrm{V \quad (Volt)}=\frac{J}{C}[/math]
|[math]P=\varphi \, I \quad (U\, I)[/math]
|[math]\triangle E = \varphi \, Q \quad (U \, Q)[/math]
|[math]E= \bar \varphi \, Q \quad (\bar U \, Q)[/math]
|}
Name der Energie | Mengenartige (extensive) Größen (Energieträger) |
haben zugehörige Eigenschaften (intensive Größen) (Potential / Beladungsmaß) |
Leistung [math]P = \dot E[/math] |
absolute Energieänderung |
gespeicherte Energie | ||
---|---|---|---|---|---|---|---|
Energie | [math][E]=\mathrm{J \quad(Joule)}[/math] | ||||||
elektrische Energie | el. Ladung | [math][Q] = \mathrm{C \quad (Coulomb)}[/math] | el. Potential | [math][\varphi_{el}] = \mathrm{V \quad (Volt)}=\frac{J}{C}[/math] | [math]P=\varphi \, I \quad (U\, I)[/math] | [math]\triangle E = \varphi \, Q \quad (U \, Q)[/math] | [math]E= \bar \varphi \, Q \quad (\bar U \, Q)[/math] |
Tabelle mit mehr Rand in den Zellen
{|style="border-collapse: separate; border-spacing: 30px 0px;"
|
a) [math]\int_0^2 \!\! f(x)\,dx[/math]
|
b) [math]\int_0^{3.9}\!\! f(x)\,dx[/math]
|
c) [math]\int_{3.9}^{6.2}\!\! f(x)\, dx[/math]
|}
a) [math]\int_0^2 \!\! f(x)\,dx[/math] |
b) [math]\int_0^{3.9}\!\! f(x)\,dx[/math] |
c) [math]\int_{3.9}^{6.2}\!\! f(x)\, dx[/math] |
Eine mathematische Gleichungsumformung / Herleitung
\begin{array}{rcl} z &=& a \\ f(x,y,z) &=& x + y + z \end{array} |
[math] \begin{array}{rcl} z & = & a \\ f(x,y,z) & = & x + y + z \end{array} [/math] |
\begin{array}{rrcll} & a\, b &=& z & | \, \mathopen: b \quad \text{teilen} \\ \Rightarrow & a &=& \frac{z}{b} \end{array} |
[math] \begin{array}{rrcll} & a\, b & = & z & |\,\mathopen: b \quad \text{teilen} \\ \Rightarrow & a & = & \frac{z}{b} \end{array} [/math] |
\text{aus } 2\,x=8 \text{ folgt: } x=4 |
[math] \text{aus } 2\,x=8 \text{ folgt: } x=4 [/math] |
Vektoren und Matrizen
\begin{pmatrix} 1 \\ 2 \end{pmatrix} |
[math]\begin{pmatrix} 1 \\ 2 \end{pmatrix}[/math] |
\begin{pmatrix} 11 & 12 \\ 21 & 22 \end{pmatrix} |
[math]\begin{pmatrix} 11 & 12 \\ 21 & 22 \end{pmatrix}[/math] |
Ein wichtiger Merksatz
{|class="wikitable" style="border-style: solid; border-width: 4px "
|
ES GIBT NICHTS GUTES, AUSSER MAN TUT ES!
|}
ES GIBT NICHTS GUTES, AUSSER MAN TUT ES! |
Geogebra aus GeogebraTube einbinden
{{#widget:Iframe |url=http://tube.geogebra.org/material/iframe/id/296557/width/1222/height/770/border/888888/rc/false/ai/false/sdz/true/smb/false/stb/false/stbh/true/ld/false/sri/true/at/auto |width=1200 |height=600 |border=0 }}
Ein Video von youtube
Mit: <youtube>8wN2y94N3GI</youtube>
Ein Bild im richtigen Maßstab
Bei 96dpi und 100% Druckgröße wird ein Zentimeter auch einen Zentimeter lang!
Test_4x6cm_96dpi.png