Energie und Impuls (Potential und Kraftverlauf) einer mechanischen Schwingung
Inhaltsverzeichnis
Die Wege von Impuls und Energie
Ein Körper kann nie alleine schwingen. Er braucht einen Partner.
Zwei Körper schwingen
E doppelt so schnell wie p
Die Erde als Schwingungspartner
Erde hat (fast) keine Energie
Grafische Darstellungen
in Abhängigkeit von der Zeit
in Abhängigkeit vom Ort
Formeln
Energie:
In Abhängigkeit von der Frequenz und der Amplitude: (E prop f^2 und y^2)
In Abhängigkeit von der Federstärke und der Amplitude: (E prop D und y^2)
Impuls: Ist nicht konstant!
Aufgaben
1 Schwebung
Zwei Stimmgabeln erzeugen eine Schwebung, weil die eine mit einem Reiter versehen wurde. Die Frequenz derjenigen ohne Reiter beträgt 440 Hz. Schätzen Sie die Frequenz der anderen Stimmgabel ab.
2 Überlagerung
Bestimmen Sie jeweils die Schwingung, die aus der Überlagerung von y1 und y2 entsteht mit Hilfe des Zeigerdiagramms:
- [math]y_1 = 2cm \, sin(2t)\qquad y_2 = 4cm sin(2t+\pi)[/math]
- [math]y_1 = 2cm \, sin(2t)\qquad y_2 = 4cm sin(2t+\pi/2)[/math]
- [math]y_1 = 2cm \, sin(2t)\qquad y_2 = 2cm sin(2t+\pi)[/math]
3 Energie
Welche Energie hat eine schwingender Körper der Masse 1kg, wenn er eine Periodendauer von 1s und eine Amplitude von 1cm hat?
4 Energie
Wie muss ein Körper der Masse 1kg schwingen, damit die Schwingung 1J Energie hat?
5 Energie(y,D,m)
Wie verändert sich die in einer Federschwingung enthaltene Energiemenge, wenn
- man die Amplitude verdoppelt?
- man die Federhärte verdoppelt?
- man die Masse verdoppelt?
und dabei jeweils die anderen Größen konstant hält.
6 Energie(f)
Zwei gleichschwere Körper schwingen mit der gleichen Amplitude, aber der eine doppelt so schnell wie der andere. Vergleichen sie die Energiemengen.
7 Schwingung bei bekannter Energie
Zwei Wagen, die beide eine Masse von 600g haben, sind mit einer Feder der Härte 1N/cm verbunden. Wie schwingen die Wagen, wenn ihnen eine Energie von 1Joule zugeführt wird?
8 Wasserstoffmolekül
Ein H2-Molekül kann man idealisiert als zwei, mit einer Feder verbundene, Körper auffassen. Durch eine Messung regt man das Molekül zum Schwingen an und bestimmt die Frequenz der Schwingung zu 9,2 1011 Hz.
Bestimmen sie die "Federkonstante" der gedachten Feder zwischen den Molekülen. Wieviel Energie steckt im Molekül, wenn beide Atome mit einer Amplitude von 10-10m schwingen?
(Fehlende Angaben entnehmen sie dem Buch oder dem www.)
9 Ekin = ESpann
Für welche Auslenkung verteilt sich die Energie eines (horizontalen) Federpendels gerade je zur Hälfte auf die Feder und den Impuls?
10 Zeitlicher Mittelwert von Ekin und ESpann
Bestimmen sie das zeitliche Mittel der kinetischen und potentiellen Energie (Spannenergie der Feder) eines (horizontalen) Federpendels an einem selbst gewählten Beispiel. Hinweise:
- [math]E_{kin}(t)=m/2 \, v(t)^2 \qquad E_{pot}=D/2 \, y(t)^2[/math]
Den Mittelwert einer Funktion f(x) von x1 bis x2 bestimmt man mit Hilfe des Integrals:
- [math]\bar f = \frac{1}{x_2 - x_1} \int_{x_1}^{x_2}f(x) dx[/math]
Anschaulich bestimmt man zur Fläche zwischen Schaubild und x-Achse ein Rechteck gleicher Fläche. Die Höhe des Rechtecks ist gerade der Mittelwert.