Energie und Impuls (Potential und Kraftverlauf) einer mechanischen Schwingung

Aus Schulphysikwiki
Wechseln zu: Navigation, Suche

Versuche und Beispiele

Versuch: Ein Pendel auf einem Skateboard

Skateboard Pendel.jpg
Beobachtung

Kann man sich hier als Video anschauen.

Versuch: Schwingende Wagen

Beobachtung

Kann man sich hier als Video anschauen.


Animation

Zur Vereinfachung ist bei dieser Animation die Feder jeweils im Kugelmittelpunkt befestigt. Bei einer realen Situation würde sich die Befestigung natürlich an den Rand der Kugel verschieben.

Man kann die Masse der rechten Kugel und die Gesamtenergie der Schwingung einstellen.

Zur Steuerung läßt sich die Animation in Zeilupe ablaufen oder anhalten. Dann läßt sich die Zeit auch mit dem Schieberegler verstellen.

Die Wege von Impuls und Energie

Ein Körper kann nie alleine schwingen. Er braucht einen Partner.

Die Erklärung liefert die Impulserhaltung: Die Summe der Impulse ist, im Schwerpunktsystem, immer Null. Beide Körper enthalten zu jedem Zeitpunkt die gleiche Impulsmenge, allerdings mit entgegengesetzter Richtung.

Selbst bei einem Federpendel, das z.B. an einer Wand befestigt ist (bei dem es folglich so aussieht, als würde nur ein Körper schwingen), schwingt immer ein anderer Körper, in diesem Fall die Erde, mit. Wegen der wesentlich größeren Masse der Erde ist deren Geschwindigkeit allerdings nahezu zu vernachlässigen, wodurch es dem Betrachter so erscheint, als würde nur das Federpendel schwingen.

Die beiden Körper schwingen mit einem feststehenden gemeinsamen Schwerpunkt. Bei dem an der Wand befestigten Federpendel wäre der gemeinsame Schwerpunkt, da die Erde ja eine viel größere Masse hat als der Rest des Federpendels, nahezu identisch mit dem der Erde.

Ein Vergleich der Darstellungen mit Kräften und mit dem Impulsfluss bei einer Feder unter Zugspannung. (Die positive Impulsrichtung ist nach rechts.)
Der Impuls- und Energiefluss.


Während einer Schwingung fließt die Energie doppelt so schnell zwischen den Körpern (Bewegungsenergie) und der Feder (potentielle Energie) hin und her, wie der Impuls zwischen den zwei Körpern.


Der Impulsfluss während einer Schwingung.

Dies lässt sich gut am nebenstehenden Bild verdeutlichen.

Wenn die Feder vollständig auseinandergezogen (Nr.0) oder zusammengedrückt (Nr.4) ist, enthält sie alle Energie des Systems (Beide Körper bewegen sich an genau diesem Punkt nicht). Ist sie entspannt (Nr.2 und Nr.6), so enthält sie gar keine. Die Energie hat sich also während einer Periode zwei mal zwischen Feder und den Körpern hin und her bewegt.

Der Impuls verändert sich mit der gleichen Periode wie die Auslenkung: Sind die Kugeln in der Ruhelage (Nr.3 und Nr.6), so ist der Impuls maximal oder minimal.

Impuls- und Energiemengen der Schwingungspartner

Im Schwerpunktsystem haben beide Schwingungspartner betragsmäßig immer den gleichen Impuls. Durch die unterschiedlichen Geschwindigkeiten nehmen sie aber nicht die gleiche kinetische Energie auf. Dies ergibt sich direkt aus dem Zusammenhang von Impuls und kinetischer Energie:

[math]E_{kin}= {p^2 \over 2m} [/math]

Bei gleichem Impuls ist die kinetische Energie antiproportional zur Masse. Ein Gegenstand mit doppelter Masse hat nur die halbe Energie!

Die Erde als Schwingungspartner.

Ist die Erde (oder ein ähnlich großer Körper) einer der zwei schwingenden Körper und der andere Körper ist erheblich kleiner, so nimmt die Erde zwar Impuls auf, aber quasi keine Energie.

[math]E_{Erde}={1 \over 2} MV^2 = {P^2 \over 2M} \qquad .[/math] da [math] V = {P \over M} [/math]
[math]E_m={1 \over 2} mv^2 = {p^2 \over 2m} \qquad .[/math] da [math] v = {p \over m} [/math]

Weil aber der Impuls beider Körper gleich ist [math]( P=p )[/math], folgt:

[math]\Rightarrow E_{Erde} \lt \lt E_m[/math]


Lage des Schwerpunkts und Trennen in zwei Teilsysteme

Schwingung zwei Körper Schwerpunkt.png

Der Schwerpunkt ist so etwas wie das gewichtete Mittel der beiden Orte. Das ist vergleichbar mit dem Durchschnitt einer Klassenarbeit:

[math]S=\frac{m_1\, s_1 + m_2\, s_2}{m_1+m_2}[/math][1]

Betrachtet man die Entfernung der einzelnen Gegenstände vom gemeinsamen Schwerpunkt, so findet man, dass sie gerade umgekehrt proportional zu den Massen sind:

[math]m_1 \, l_1 = m_2\, l_2[/math]

Man kann nun nur eine Seite der Schwingung betrachten, indem man die Feder am Ort des Schwerpunktes in Gedanken durchschneidet und dort eine sehr große Masse anbringt. Dies ist auch der Fall, wenn man die Erde als Schwingungspartner hat.

Da die Feder nun kürzer geworden ist, hat sie auch eine andere Federhärte. Denn bei gleicher Änderung der Länge ist nun die wirkende Kraft größer. Ist die Feder nur halb so lang, verdoppelt sich die Federhärte. Die "neuen" Federhärten der Teilfedern betragen deshalb:

[math]D_1=\frac{l}{l_1}D \qquad D_2=\frac{l}{l_2}D[/math]
Beispielrechnung

Das Bild verdeutlicht die Situation: Man kennt die Massen der beiden Kugeln, die Länge und Härte der Feder. Daraus berechnet sich dann der gemeinsame Schwerpunkt und die Härte der Teilfedern. Den Ursprung des Koordinatensystems kann man in den Ort der linken Kugel, also [math]S_1[/math] legen.

[math]m_1=1\,\rm kg \ \ S_1=0\,\rm m \qquad \text{und} \qquad m_2=3\,\rm kg \ \ S_1=12\,\rm m \qquad \text{und}\qquad D=100\frac{\rm N}{\rm m}[/math]
[math]S=\mathrm{\frac{1\,kg\cdot 0\,m + 3\,kg \cdot 12\,m}{4\,kg}= 9\,m}[/math]

Der Schwerpunkt liegt also 9 Meter von der linken Kugel entfernt. Das gleiche Ergebnis liefert auch die Rechnung mit den Abständen zum Schwerpunkt:

[math]m_1 \, l_1 = m_2\, l_2 \qquad \text{und} \qquad l_1 + l_2 = l =12\,\rm m[/math]
[math]1\,{\rm kg}\cdot \, l_1 = 3\,{\rm kg}\cdot l_2 \qquad \text{und} \qquad l_2 =12\,\rm m - l_1\quad |\text{Die rechte in die linke Gleichung einsetzen.}[/math]
[math]1\,{\rm kg}\cdot \, l_1 = 3\,{\rm kg}\cdot (12\,{\rm m} - l_1) \qquad |\mathrm{Nach}\ l_1 \mathrm{aufl\ddot o sen.}[/math]
[math]l_1 = 9\,{\rm m} \quad \Rightarrow \quad l_2 = 3\,{\rm m}[/math]

Für die Federhärten der Teilfedern ergibt sich:

[math]D_1 = \mathrm{\frac{12\,m}{9\,m}\cdot 100\frac{N}{m}} = \mathrm{133\frac{N}{m}}\qquad D_2=\mathrm{\frac{12\,m}{3\,m} \cdot 100\frac{N}{m}= 400\frac{N}{m}}[/math]

Grafische Darstellungen

Schwingungen Wagen an Feder.png

Die Diagramme sind für eine einfache harmonische Feder-Schwingung eines Wagens berechnet worden. Sie sehen aber für nichtharmonische Schwingungen ähnlich aus.

Da der Wagen zusammen mit der Erde schwingt, kann man seinen Schwingungspartner als ruhend betrachten. Alle Diagramme beschreiben die Eigenschaften des Wagens aus der Sicht eines auf der Erde ruhenden Betrachters.

in Abhängigkeit von der Zeit

Hier kann man sehen, wie die Elongation und die Geschwindigkeit (und wegen [math]p=m\, v[/math] auch der Impuls) sich mit der Zeit verändern.

Die Elongation Y und die Geschwindigkeit V in Abhängigkeit der Zeit.

Die Bewegungsenergie hängt über [math]E_{kin}=1/2 \, m v^2[/math] direkt mit der Geschwindigkeit zusammen. Man erkennt auch gut, dass die Energie in jeder Periode zweimal die Form wechselt. Die Gesamtenergie bleibt konstant.

Die Energie der Feder EFeder, die Bewegungsenergie des schwingenden Körpers Ekin und die Gesamtenergie Eges in Abhängigkeit der Zeit.

in Abhängigkeit vom Ort

Die Energieformen eines (horizontalen) Federpendels in Abhängigkeit vom Ort.
Die auf den schwingenden Gegenstand wirkende Kraft in Abhängigkeit vom Ort.

In Abhängigkeit von der Elongation steigt die potentielle Energie quadratisch, während die kinetische Energie quadratisch abnimmt.

Die Gesamtenergie ist die Addition beider Energien, bleibt also konstant.

Schwingung als Bewegung in einem Potential

Es fällt auf: Steigt die potentielle Energie stark an, dann ist auch die bremsende Kraft groß. Und ist die Rückstellkraft positiv, aber klein, so nimmt die potentielle Energie langsam ab.

Energieübertragung mit einer Kraft

[math]E\approx F\, s[/math]

Fläche unter dem Kraftverlauf (Kraft-Ort-Kurve) [math]F(s)[/math]

[math]E=\int F(s) ds = \bar F \, s[/math]

Steigung von [math]E_{pot}[/math]

[math]F\approx \frac{E}{s} = \frac{\triangle E}{\triangle s}[/math]

[math]F=E' [/math]

Von der potentiellen Energie zum Potential durch Normierung auf 1kg: [math]\varphi_{pot}=\frac{1}{m}\, E_{pot}[/math]

Vorstellung: Nett, aber nicht exakt: Gegenstand rutscht im Potential hin- und her.

Das Potential eines Feldes

Fußnoten

  1. Die Gleichung gilt auch in drei Dimensionen, dann schreibt man die Orte als Punkte, bzw. Vektoren.