Aufgaben zum elektrischen Feld (Lösungen): Unterschied zwischen den Versionen

Aus Schulphysikwiki
Wechseln zu: Navigation, Suche
(Zum Kondensator)
(Zum Kondensator)
Zeile 54: Zeile 54:
  
 
Die Kapazität kann man nur direkt über die Eigenschaften des Kondensators berechnen, weil man die gespeicherte Ladung noch nicht kennt:
 
Die Kapazität kann man nur direkt über die Eigenschaften des Kondensators berechnen, weil man die gespeicherte Ladung noch nicht kennt:
:<math>C= \epsilon_0\,\frac{A}{d} = 8{,}854 \cdot 10^{-12} \frac {\mathrm{A}\,\mathrm{s}} {\mathrm{V}\,\mathrm{m}} \cdot \frac{\pi \cdot (0{,}1225\,\rm m)^2}{0{,}01\,\rm m} \approx 4{,}17 \cdot 10^{-11} \,\rm F = 41{,}7 \cdot 10^{-12} \,\rm F = 41{,}7 \cdot 10^{-12} \,\rm pF </math>
+
:<math>C= \epsilon_0\,\frac{A}{d} = 8{,}854 \cdot 10^{-12} \frac {\mathrm{A}\,\mathrm{s}} {\mathrm{V}\,\mathrm{m}} \cdot \frac{\pi \cdot (0{,}1225\,\rm m)^2}{0{,}01\,\rm m} \approx 4{,}17 \cdot 10^{-11} \,\rm F = 41{,}7 \cdot 10^{-12} \,\rm F = 41{,}7 \,\rm pF </math>
  
 
a) Die Feldstärke ist die räumliche Änderungsrate des Potentials:
 
a) Die Feldstärke ist die räumliche Änderungsrate des Potentials:
Zeile 69: Zeile 69:
 
:<math>F=\frac{1}{2} \, Q \, E = \frac{1}{2}\, \epsilon_0 \,A\,E^2 = \frac{Q^2}{2\epsilon_0\,A}  = \frac{W}{d} =  \frac{2{,}09 \cdot 10^{-3} \,\rm J }{5 \cdot 0{,}01\,\rm m} = 0{,}209 \,\rm N  \approx 0{,}2\,\rm N</math>
 
:<math>F=\frac{1}{2} \, Q \, E = \frac{1}{2}\, \epsilon_0 \,A\,E^2 = \frac{Q^2}{2\epsilon_0\,A}  = \frac{W}{d} =  \frac{2{,}09 \cdot 10^{-3} \,\rm J }{5 \cdot 0{,}01\,\rm m} = 0{,}209 \,\rm N  \approx 0{,}2\,\rm N</math>
  
====Ein Plattenkondensator mit Dielektrikum====
+
:e) Nun füllt man den Zwischenraum des Kondensators mit Polytetrafluorethylen (Teflon). Es hat eine Permittivität von <math>\epsilon_r= 2</math>. Dann lädt man den Kondensator wieder mit 10kV auf. Berechnen Sie, wie sich die Werte von a) bis d) verändern und wie sich die Energie auf das Feld und das polarisierte Teflon verteilt.
Der gleiche Plattenkondensator enthält nun Glas als Dielektrikum:
+
*kreisförmigen Platten mit dem Durchmesser 30cm,
+
*dem Plattenabstand 5mm,
+
*auf 5kV geladen
+
*Glas hat die Permittivität <math>\epsilon_r = 6 </math>
+
*und eine Durchschlagsfestigkeit von <math> E_{max} = 25\,\rm\frac{kV}{mm}</math>
+
  
Nun möchte man gerne wissen:
+
Die Kapazität des Kondensators ist nun 6 mal größer als vorher:
 +
:<math>C = \epsilon_0\,\epsilon_r\,\frac{A}{d} = \frac{Q}{U} = 6 \cdot  41{,}7 \,\rm pF = 250\, pF</math>
  
*wie stark das elektrische Feld ist,  
+
Die Feldstärke ist unverändert, weil wieder die gleiche Spannung beim gleichen Plattenabstand anliegt:
*wieviel Ladung auf den Platten ist,
+
:<math>E=\frac{U}{d} = \rm \frac{10^4\, \rm V}{0,01\,\rm m} = 10^6\rm \frac{V}{m} </math>
*welche Kapazität der Kondensator hat,
+
*wieviel Energie gespeichert ist und
+
*welche Kraft auf die Platten wirkt
+
  
und zusätzlich:
+
Zur Berechnung der Ladungsmenge muß man nun berücksichtigen, dass die Kapazität sich versechsfacht hat, also speichert der Kondensator auch 6 mal so viel Ladung. Man kann auch argumentieren, dass man 6 mal soviel Ladung verschieben muss, um die gleiche Feldstärke zu erreichen, da die Polarisationsladungen die effektive Gesamtladung und damit die Feldstärke verringern:
 
+
:<math>Q=C\,U = 41{,}7 \cdot 10^{-12} \,\rm F \cdot 10^4\,\rm V = 41{,}7 \cdot 10^{-8} \,\rm C = 417 \cdot 10^{-9} \,\rm C = 417\,\rm nC </math>
*welche maximale Spannung man anlegen kann
+
*welche maximale Energiemenge gespeichert werden kann.
+
 
+
Die Feldstärke ist die räumliche Änderungsrate des Potentials und ist unverändert, weil wieder die gleiche Spannung beim gleichen Plattenabstand anliegt:
+
:<math>E=\frac{U}{d} = \rm \frac{5000\, \rm V}{0,005\,\rm m} = 1000000\rm \frac{V}{m} </math>
+
 
+
Zur Berechnung der Ladungsmenge muß man nun berücksichtigen, dass man 6 mal soviel Ladung verschieben muss, um die gleiche Feldstärke zu erreichen, da die Polarisationsladungen die effektive Gesamtladung und damit die Feldstärke verringern:
+
:<math>
+
\begin{array}{rcl}
+
Q &=& \epsilon_0 \, \epsilon_r\, E \, \\
+
&=& 6\cdot 6{,}25\cdot 10^{-7}\,\rm C = 6\cdot 626\,\rm nC = 3756\,\rm nC
+
\end{array}</math>
+
  
 
Die Kapazität des Kondensators ist nun 6 mal größer als vorher:
 
Die Kapazität des Kondensators ist nun 6 mal größer als vorher:

Version vom 5. Mai 2017, 21:19 Uhr

HINWEIS

Die Lösungen sind noch nicht ausgearbeitet. Sie kommen nach und nach hinzu.

Wer will kann gerne Lösungen verfassen und hier reinschreiben.

Tipps und Lösungsansätze

Zum Kondensator

1) Siehe Heft oder später im Abschnitt über den Kondensator.

2) Das Schaubild des U(Q)-Diagramms ist eine Ursprungsgerade.

Die maximale Spannung beträgt 5V, die maximale Ladung [math]Q=C\,U=\mathrm{0,33F \cdot 5V = 1,65C}[/math].

Die Energiemenge entspricht der Dreiecksfläche unter dem Schaubild: [math]E=\mathrm{0,5\cdot 5V\cdot 1,65C=4,125J}[/math]


4) Das Dielelektrikum wird elektrisch influenziert und baut ein Gegenfeld auf. Die Feldstärke im Kondensator sinkt.

Bei konstanter Ladung folgt daraus die Abnahme der Spannung an den Platten und somit eine Vergrößerung der Kapazität.

Die Dielektrizitätszahl [math]\epsilon_r[/math] gibt den Faktor an, um den die Ladung und die Kapazität zunimmt, bzw. die Feldstärke und die Spannung abnimmt.

Hinweise und Lösungen

Grundlagen

  • Entweder mit einem geladenen Probekörper (Monopol) oder mit influenzierten, neutralen Körpern (Dipolen). In beiden Fällen ergibt sich je nach Situation eine Kraftwirkung.

Flächenladungsdichte und erste Maxwellsche Gleichung

  • Die Feldstärke nimmt proportional zu [math]\frac{1}{r}[/math] ab: [math]E=\mathrm{c}\cdot\frac{1}{r}[/math] (Vgl. Feld eines geladenen langen Drahtes)
Demnach hat das Potential die Form [math]\varphi(r)=\mathrm{c} \cdot \ln(r)[/math].
Mit [math]\mathrm{\varphi(0,0005m)=10kV}[/math] kann man die Konstante c bestimmen.

Zum Kondensator

1) Vergleichen Sie einen Kondensator mit einem Fahrradreifen.

2) Beschreiben Sie eine technische Bauform eines Kondensators.

(Wikipedia: Bauformen von Kondensatoren, Bilder, ...)

3) Ein idealer Kondensator hat eine konstante Kapazität von 0,33F bei maximal 5V Spannung. Zeichnen Sie die U(Q)-Kennlinie. Lesen Sie an der Kennlinie ab wieviel Ladung und Energie der Kondensator maximal aufnehmen kann.

4) Berechnen Sie für einen Plattenkondensator mit kreisförmigen Platten (r=12,25cm) im Abstand von 1cm die Kapazität mit Luft im Zwischenraum.

Der Kondensator wird mit 10kV geladen. Berechnen Sie:

a) wie stark das elektrische Feld ist,
b) wieviel Ladung auf den Platten ist,
c) wieviel Energie gespeichert ist und
d) welche Kraft auf die Platten wirkt.

Die Kapazität kann man nur direkt über die Eigenschaften des Kondensators berechnen, weil man die gespeicherte Ladung noch nicht kennt:

[math]C= \epsilon_0\,\frac{A}{d} = 8{,}854 \cdot 10^{-12} \frac {\mathrm{A}\,\mathrm{s}} {\mathrm{V}\,\mathrm{m}} \cdot \frac{\pi \cdot (0{,}1225\,\rm m)^2}{0{,}01\,\rm m} \approx 4{,}17 \cdot 10^{-11} \,\rm F = 41{,}7 \cdot 10^{-12} \,\rm F = 41{,}7 \,\rm pF [/math]

a) Die Feldstärke ist die räumliche Änderungsrate des Potentials:

[math]E=\frac{U}{d} = \rm \frac{10^4\,\rm V}{0{,}01\,\rm m} = 10^6\,\rm\frac{V}{m} [/math]

b) Die Ladungsmenge bestimmt man am einfachsten mit der Kapazität oder über die Ladung als Quellenstärke:

[math]Q=C\,U = 41{,}7 \cdot 10^{-12} \,\rm F \cdot 10^4\,\rm V = 41{,}7 \cdot 10^{-8} \,\rm C = 417 \cdot 10^{-9} \,\rm C = 417\,\rm nC [/math]
[math]Q=\epsilon_0 \, E \, A = 8{,}854 \cdot 10^{-12} \frac {\mathrm{A}\,\mathrm{s}} {\mathrm{V}\,\mathrm{m}} \cdot 10^6\,\rm\frac{V}{m} \cdot \pi \cdot (0{,}1225\,\rm m)^2 \approx 4{,}17 \cdot 10^{-7} \,\rm C [/math]

c) Die Energie kann man nun auf verschiedene Weise berechnen:

[math]W=\frac{1}{2} \, Q \, U = \frac{Q^2}{2\ C} = \frac{1}{2}\, C \, U^2 = 2{,}09 \cdot 10^{-3} \,\rm J \approx 2\, \rm mJ[/math]

d) Zur Berechnung der Kraft auf die Platten hat man viele Möglichkeiten. Am einfachsten ist es über die gespeicherte Energie:

[math]F=\frac{1}{2} \, Q \, E = \frac{1}{2}\, \epsilon_0 \,A\,E^2 = \frac{Q^2}{2\epsilon_0\,A} = \frac{W}{d} = \frac{2{,}09 \cdot 10^{-3} \,\rm J }{5 \cdot 0{,}01\,\rm m} = 0{,}209 \,\rm N \approx 0{,}2\,\rm N[/math]
e) Nun füllt man den Zwischenraum des Kondensators mit Polytetrafluorethylen (Teflon). Es hat eine Permittivität von [math]\epsilon_r= 2[/math]. Dann lädt man den Kondensator wieder mit 10kV auf. Berechnen Sie, wie sich die Werte von a) bis d) verändern und wie sich die Energie auf das Feld und das polarisierte Teflon verteilt.

Die Kapazität des Kondensators ist nun 6 mal größer als vorher:

[math]C = \epsilon_0\,\epsilon_r\,\frac{A}{d} = \frac{Q}{U} = 6 \cdot 41{,}7 \,\rm pF = 250\, pF[/math]

Die Feldstärke ist unverändert, weil wieder die gleiche Spannung beim gleichen Plattenabstand anliegt:

[math]E=\frac{U}{d} = \rm \frac{10^4\, \rm V}{0,01\,\rm m} = 10^6\rm \frac{V}{m} [/math]

Zur Berechnung der Ladungsmenge muß man nun berücksichtigen, dass die Kapazität sich versechsfacht hat, also speichert der Kondensator auch 6 mal so viel Ladung. Man kann auch argumentieren, dass man 6 mal soviel Ladung verschieben muss, um die gleiche Feldstärke zu erreichen, da die Polarisationsladungen die effektive Gesamtladung und damit die Feldstärke verringern:

[math]Q=C\,U = 41{,}7 \cdot 10^{-12} \,\rm F \cdot 10^4\,\rm V = 41{,}7 \cdot 10^{-8} \,\rm C = 417 \cdot 10^{-9} \,\rm C = 417\,\rm nC [/math]

Die Kapazität des Kondensators ist nun 6 mal größer als vorher:

[math]C= \epsilon_0\,\epsilon_r\,\frac{A}{d} = \frac{Q}{U} = 6 \cdot 125\, \mu F = 750\, \mu F[/math]

Die Energie kann man nun auf verschiedene Weise berechnen:

[math]E_{el}=\frac{1}{2} \, Q \, U = \frac{Q^2}{2\ C} = \frac{1}{2}\, C \, U^2 = 1{,}56\, \rm mJ[/math]

Zur Berechnung der Kraft auf die Platten hat man nun viele Möglichkeiten. Am einfachsten ist es über die gespeicherte Energie:

[math]F=\frac{1}{2} \, Q \, E = \frac{1}{2}\, \epsilon_0 \,A\,E^2 = \frac{Q^2}{2\epsilon_0\,A} = \frac{E_{el}}{d} = \frac{1{,}56 \cdot 10^{-3} \, \rm J}{5 \cdot 10^{-3} \, \rm m} = 0{,}31 \, \rm N[/math]

5) Wie verändert ein Dielektrikum die Eigenschaften eines Kondensators? Was bedeutet [math]\epsilon_r=3[/math]?

6) Ein Liter Benzin enthält ca. 30 MJ Energie. Welcher Kondensator könnte das Benzin als Energieträger ersetzen?
Baut man einen Plattenkondensator mit Luft zwischen den Platten, so springt ab einer Feldstärke von 2,5 kV/mm ein Funke über und der Kondensator ist entladen.

a) Entwerfen Sie einen Plattenkondensator, der die gleiche Energiemenge wie ein Liter Benzin speichern kann. (Tipp: Berechnen Sie zuerst die maximale Energiedichte des Kondensators! Dann legen Sie die Spannung fest und berechnen damit den Abstand und die Fläche.)

Um die Durchschlagsfestigkeit (das ist die maximale Feldstärke) des Kondensators zu erhöhen, bringt man ein Dielektrikum zwischen die Platten:

Dielektrikum [math]E_{max}[/math] [math]\epsilon_r[/math]
Glas [math]20\,\rm\frac{kV}{mm}[/math] [math]7[/math]
Polypropylen [math]52\,\rm\frac{kV}{mm}[/math] [math]2{,}1[/math]
Bariumtitanat [math]500\,\rm\frac{kV}{mm}[/math] [math]1000[/math] bis [math]10000[/math]
b) Entwerfen Sie für die verschiedenen Dielektrika wieder einen Kondensator, der 30MJ Energie aufnehmen kann!

7) Ein aufgeladener Plattenkondensator wird von der Spannungsquelle getrennt und die Platten auseinandergezogen.

a) Wie verändert sich die Spannung, die Ladungsmenge auf den Platten und die Kapazität?
b) Wie verändert sich die Feldstärke und der Energiegehalt?
c) Wo kommt die nötige Energie her?

8) Bei dem Plattenkondensator bleibt beim Auseinanderziehen diesmal die Spannungsquelle angeschlossen. Man stellt sich die gleichen Fragen:

a) Wie verändert sich die Spannung, die Ladungsmenge auf den Platten und die Kapazität?
b) Wie verändert sich die Feldstärke und der Energiegehalt?
c) Wo kommt die nötige Energie her?